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5.3. Surfaces and their triangulations

In this section, we define (two-dimensional) surfaces, which are topological
spaces that locally look like R2 (and so are supplied with local systems of coordi-
nates). It can be shown that surfaces can always be triangulated (supplied with a
PL-structure) We will not prove these two assertions here and limit ourselves to
the study of triangulated surfaces (also known as two-dimensional PL-manifolds).
The main result is a neat classification theorem, proved by means of some simple
piecewise linear techniques and with the help of the Euler characteristic.

5.3.1. Definitions and examples.

DEFINITION 5.3.1. A closed surface is a compact connected 2-manifold (with-
out boundary), i.e., a compact connected space each point of which has a neigh-
borhood homeomorphic to the open 2-disk Int D2. In the above definition, con-
nectedness can be replaced by path connectedness without loss of generality (see
??)

A surface with boundary is a compact space each point of which has a neigh-
borhood homeomorphic to the open 2-disk Int D2 or to the open half disk

Int D2
1/2 = {(x, y) ∈ R2|x ! 0, x2 + y2 < 1}.

EXAMPLE 5.3.2. Familiar surfaces are the 2-sphere S2, the projective plane
RP 2, and the torus T2 = S1 × S1, while the disk D2, the annulus, and the Möbius
band are examples of surfaces with boundary.

S2 T 2 D2

FIGURE 5.3.1. Examples of surfaces

DEFINITION 5.3.3. The connected sum M1#M2 of two surfaces M1 and M2

is obtained by making two small holes (i.e., removing small open disks) in the
surfaces and gluing them along the boundaries of the holes

EXAMPLE 5.3.4. The connected sum of two projective planes RP 2#RP 2 is
the famous Klein bottle, which can also be obtained by gluing two Möbius bands
along their boundaries (see Fig.??). The connected sum of three tori T2#T2#T2

is (topologically) the surface of a pretzel (see Fig.??).
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FIGURE 5.3.2. Klein bottle and pretzel

5.3.2. Polyhedra and triangulations. Our present goal is to introduce a com-
binatorial structure (called PL-structure) on surfaces. First we we give the corre-
sponding definitions related to PL-structures.

A (finite) 2-polyhedron is a topological space represented as the (finite) union
of triangles (its faces or 2-simplices) so that the intersection of two triangles is
either empty, or a common side, or a common vertex. The sides of the triangles
are called edges or 1-simplices, the vertices of the triangles are called vertices or
0-simplices of the 2-polyhedron.

Let P be a 2-polyhedron and v ∈ P be a vertex. The (closed) star of v in P
(notation Star(v, P )) is the set of all triangles with vertex v. The link of v in P
(notation Link(v, P )) is the set of sides opposite to v in the triangles containing v.

A finite 2-polyhedron is said to be a closed PL-surface (or a closed triangu-
lated surface) if the star of any vertex v is homeomorphic to the closed 2-disk with
v at the center (or, which is the same, if the links of all its vertices are homeomor-
phic to the circle).

Stx Lk y

y
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FIGURE 5.3.3. Star and link of a point on a surface

A finite 2-polyhedron is said to be a PL-surface with boundary if the star of
any vertex v is homeomorphic either to the closed 2-disk with v at the center or to
the closed disk with v on the boundary (or, which is the same, if the links of all its
vertices are homeomorphic either to the circle or to the line segment). It is easy to
see that in a PL-surface with boundary the points whose links are segments (they
are called boundary points) constitute a finite number of circles (called boundary
circles). It is also easy to see that each edge of a closed PL-surface (and each
nonboundary edge of a surface with boundary) is contained in exactly two faces.
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A PL-surface (closed or with boundary) is called connected if any two vertices
can be joined by a sequence of edges (each edge has a common vertex with the
previous one). Further, unless otherwise stated, we consider only connected PL-
surfaces.

A PL-surface (closed or with boundary) is called orientable if its faces can be
coherently oriented; this means that each face can be oriented (i.e., a cyclic order
of its vertices chosen) so that each edge inherits opposite orientations from the
orientations of the two faces containing this edge. An orientation of an orientable
surface is a choice of a coherent orientation of its faces; it is easy to see that that
any orientable (connected!) surface has exactly two orientations.

A face subdivision is the replacement of a face (triangle) by three new faces
obtained by joining the baricenter of the triangle with its vertices. An edge sub-
division is the replacement of the two faces (triangles) containing an edge by four
new faces obtained by joining the midpoint of the edge with the two opposite ver-
tices of the two triangles. A baricentric subdivision of a face is the replacement
of a face (triangle) by six new faces obtained by constructing the three medians of
the triangles. A baricentric subdivision of a surface is the result of the baricentric
subdivision of all its faces. Clearly, any baricentric subdivision can be obtained
by means of a finite number of edge and face subdivisions. A subdivision of a
PL-surface is the result of a finite number of edge and face subdivisions.

Two PL-surfaces M1 and M2 are called isomorphic if there exists a homeo-
morphism h : M1 → M2 such that each face ofM1 is mapped onto a face ofM2.
Two PL-surfaces M1 and M2 are called PL-homeomorphic if they have isomor-
phic subdivisions.

FIGURE 5.3.4. Face, edge, and baricentric subdivisions

EXAMPLE 5.3.5. Consider any convex polyhedron P ; subdivide each of its
faces into triangles by diagonals and project this radially to a sphere centered in
any interior point of P . The result is a triangulation of the sphere.

If P is a tetrahedron the triangulation has four vertices. This is the minimal
number of vertices in a triangulation of any surface. In fact, any triangulation
of a surface with four vertices is equivalent of the triangulation obtained from a
tetrahedron and thus for any surface other than the sphere the minimal number of
vertices in a triangulation is greater then four.

EXERCISE 5.3.1. Prove that there exists a triangulation of the projective plane
with any given number N > 4 of vertices.

EXERCISE 5.3.2. Prove that minimal number of vertices in a triangulation of
the torus is six.
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5.4. Euler characteristic and genus

In this section we introduce, in an elementary combinatorial way, one of the
simplest and most important homological invariants of a surface M – its Euler
characteristic χ(M). The Euler characteristic is an integer (actually defined for a
much wider class of objects than surfaces) which is topologically invariant (and,
in fact, also homotopy invariant). Therefore, if we find that two surfaces have
different Euler characteristics, we can conclude that they are not homeomorphic.

5.4.1. Euler characteristic of polyhedra.

DEFINITION 5.4.1. The Euler characteristic χ(M) of a two-dimensional poly-
hedron, in particular of a PL-surface, is defined by

χ(M) := V − E + F ,

where V,E, and F are the numbers of vertices, edges, and faces ofM , respectively.

PROPOSITION 5.4.2. The Euler characteristic of a surface does not depend on
its triangulation. PL-homeomorphic PL-surfaces have the same Euler character-
istic.

PROOF. It follows from the definitions that we must only prove that the Euler
characteristic does not change under subdivision, i.e., under face and edge subdi-
vision. But these two facts are proved by a straightforward verification. "

EXERCISE 5.4.1. Compute the Euler characteristic of the 2-sphere, the 2-disk,
the projective plane and the 2-torus.

EXERCISE 5.4.2. Prove that χ(M#N) = χ(M) + χ(N) − 2 for any PL-
surfaces M and N . Use this fact to show that adding one handle to an oriented
surface decreases its Euler characteristic by 2.

5.4.2. The genus of a surface. Now we will relate the Euler characteristic
with a a very visual property of surfaces – their genus (or number of handles).
The genus of an oriented surface is defined in the next section (see ??), where
it will be proved that the genus g of such a surface determines the surface up to
homeomorphism. The model of a surface of genus g is the sphere with g handles;
for g = 3 it is shown on the figure.

PROPOSITION 5.4.3. For any closed surfaceM , the genus g(M) and the Euler
characteristic χ(M) are related by the formula

χ(M) = 2− 2g(M) .

PROOF. Let us prove the proposition by induction on g. For g = 0 (the sphere),
we have χ(S2) = 2 by Exercise ??. It remains to show that adding one handle
decreases the Euler characteristic by 2. But this follows from Exercise ?? "

REMARK 5.4.4. In fact χ = β2 − β1 + β0, where the βi are the Betti numbers
(defined in ??). For the surface of genus g, we have β0 = β2 = 1 and β1 = 2g, so
we do get χ = 2− 2g.
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≈

FIGURE 5.4.1. The sphere with three handles

5.5. Classification of surfaces

In this section, we present the topological classification (which coincides with
the combinatorial and smooth ones) of surfaces: closed orientable, closed nonori-
entable, and surfaces with boundary.

5.5.1. Orientable surfaces. The main result of this subsection is the follow-
ing theorem.

THEOREM 5.5.1 (Classification of orientable surfaces). Any closed orientable
surface is homeomorphic to one of the surfaces in the following list

S2, S1 × S1 (torus), (S1 × S1)#(S1 × S1) (sphere with 2 handles), . . .

. . . , (S1 × S1)#(S1 × S1)# . . .#(S1 × S1) (sphere with k handles), . . .
Any two surfaces in the list are not homeomorphic.

PROOF. By ?? we may assume that M is triangulated and take the double
baricentric subdivision M ′′ of M . In this triangulation, the star of a vertex of M ′′

is called a cap, the union of all faces of M ′′ intersecting an edge of M but not
contained in the caps is called a strip, and the connected components of the union
of the remaining faces ofM ′′ are called patches.

Consider the union of all the edges of M ; this union is a graph (denoted G).
Let G0 be a maximal tree of G. Denote by M0 the union of all caps and strips
surrounding G0. Clearly M0 is homeomorphic to the 2-disk (why?). If we suc-
cessively add the strips and patches fromM −M0 toM0, obtaining an increasing
sequence

M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mp = M,

we shall recoverM .
Let us see what happens when we go fromM0 toM1.
If there are no strips left, then there must be a patch (topologically, a disk),

which is attached along its boundary to the boundary circle Σ0 ofM0; the result is
a 2-sphere and the theorem is proved.

Suppose there are strips left. At least one of them, say S, is attached along
one end to Σ0 (because M is connected) and its other end is also attached to Σ0
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FIGURE 5.5.1. Caps, strips, and patches

(otherwise S would have been part ofM0). Denote byK0 the closed collar neigh-
borhood of Σ0 in M0. The collar K0 is homoeomorphic to the annulus (and not
to the Möbius strip) because M is orientable. Attaching S to M0 is the same as
attaching another copy of K ∪ S to M0 (because the copy of K can be homeo-
morphically pushed into the collar K). But K ∪ S is homeomorphic to the disk
with two holes (what we have called “pants”), because S has to be attached in the
orientable way in view of the orientability ofM (for that reason the twisting of the
strip shown on the figure cannot occur). ThusM1 is obtained fromM0 by attaching
the pantsK ∪ S by the waist, andM1 has two boundary circles.

FIGURE ??? This cannot happen

Now let us see what happens when we pass fromM1 toM2.
If there are no strips left, there are two patches that must be attached to the two

boundary circles ofM1, and we get the 2-sphere again.
Suppose there are patches left. Pick one, say S, which is attached at one end

to one of the boundary circles, say Σ1 ofM1. Two cases are possible: either
(i) the second end of S is attached to Σ2, or
(ii) the second end of S is attached to Σ1.
Consider the first case. Take collar neighborhoods K1 and K2 of Σ1 and Σ2;

both are homoeomorphic to the annulus (becauseM is orientable). Attaching S to
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M1 is the same as attaching another copy ofK1∪K2∪S toM1 (because the copy
ofK1 ∪K2 can be homeomorphically pushed into the collarsK1 andK2).

FIGURE ??? Adding pants along the legs

But K − 1 ∪K2 ∪ S is obviously homeomorphic to the disk with two holes.
Thus, in the case considered, M2 is obtained from M1 by attaching pants to M1

along the legs, thus decreasing the number of boundary circles by one,
The second case is quite similar to adding a strip toM0 (see above), and results

in attaching pants toM1 along the waist, increasing the number of boundary circles
by one.

What happens when we add a strip at the ith step? As we have seen above,
two cases are possible: either the number of boundary circles ofMi−1 increases by
one or it decreases by one. We have seen that in the first case “inverted pants” are
attached toMi−1 and in the second case “upright pants” are added toMi−1.

FIGURE ??? Adding pants along the waist

After we have added all the strips, what will happen when we add the patches?
The addition of each patch will “close” a pair of pants either at the “legs” or at the
“waist”. As the result, we obtain a sphere with k handles, k ! 0. This proves the
first part of the theorem.

cup upsidedown pants

cap pants (right side up)

FIGURE 5.5.2. Constructing an orientable surface
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To prove the second part, it suffices to compute the Euler characteristic (for
some specific triangulation) of each entry in the list of surfaces (obtaining 2, 0,−2,−4, . . . ,
respectively). "

5.5.2. Nonorientable surfaces and surfaces with boundary. Nonorientable
surfaces are classified in a similar way. It is useful to begin with the best-known
example, the Möbius strip, which is the nonorientable surface with boundary ob-
tained by identifying two opposite sides of the unit square [0, 1]× [0, 1] via (0, t) ∼
(1, 1− t). Its boundary is a circle.

Any compact nonorientable surface is obtained from the sphere by attaching
severalMöbius caps, that is, deleting a disk and identifying the resulting boundary
circle with the boundary of a Möbius strip. Attaching m Möbius caps yields a
surface of genus 2−m. Alternatively one can replace any pair of Möbius caps by
a handle, so long as at least one Möbius cap remains, that is, one may start from a
sphere and attach one or two Möbius caps and then any number of handles.

All compact surfaces with boundary are obtained by deleting several disks
from a closed surface. In general then a sphere with h handles, m Möbius strips,
and d deleted disks has Euler characteristic

χ = 2− 2h−m− d.

In particular, here is the finite list of surfaces with nonnegative Euler characteristic:

Surface h m d χ Orientable?
Sphere 0 0 0 2 yes
Projective plane 0 1 0 1 no
Disk 0 0 1 1 yes
Torus 1 0 0 0 yes
Klein bottle 0 2 0 0 no
Möbius strip 0 1 1 0 no
Cylinder 0 0 2 0 yes


